
THE CURSE OF DIMENSIONALITY

a drama in five acts

michelle hung and andrew gritsevskiy

Notes by us!!!†

W375, Brown

In the beginning the Universe was created. This has made a lot of people very
angry and been widely regarded as a bad move. (Douglas Adams, The

Hitchhiker’s Guide to the Galaxy)

1 an introduction

When you were born, a lot of things quickly became axioms. You always
accelerate downward at 1g, the sun shines from above, the pressure is 1atm.
We’ve gotten so used to this that it’s terrifying to go on a roller coaster; we
shine flashlights onto the bottom of our faces while telling horror stories;
our ears have to do significant adjustment to the 0.78 atm experienced on
airplanes. However, one fundamental axiom restricts us forever—and no
matter how hard we try, we have no change of escaping it (outside our powerful
imagination). This principle of the universe is that we live in three spatial
dimensions.

In many ways, this is a blessing. Imagine the complexity of kinematics
calculations if projectiles flew through 10-dimensional space1. However, in
a ten-dimensional world, we’d have a much lower chance of getting into
the San Francisco housing crisis. Most importantly, three dimensions are
easy to understand, and work quite well for everything we know. However,
our intuition fails miserably as the number of dimensions increases, which
jeopardizes our ability to solve mathematical problems, discover new cures to
diseases, and begs the crucial question of what goes wrong in higher dimensions?

†Disclaimer: these notes have not been proofread and are not intended for publication.
1As physicist D. Kauffman pointed out, kinematics would not necessarily become a lot more

difficult; however, in many other ways, life as we know it would either cease to exist or have to
adapt significantly; for instance, due to the lack of solar system formations. For an interesting
look at why 3 spatial + 1 time dimension may be necessary for us to exist, check out Max
Tegmark’s paper at http://space.mit.edu/home/tegmark/dimensions.pdf.

1

http://space.mit.edu/home/tegmark/dimensions.pdf

The Curse of Dimensionality

2 a failure of intuition

Consider the following simple construction in R2: we take a 2 × 2 square,
centered at the origin. Place a quarter-circle in each of the corners, and finally,
inscribe a circle centered at the origin tangent to all four quarter-circles, as
shown:

Figure 1: The construction in R2

x

y

1

1-1

-1

Let’s find the ratio q2 of the area of the inner circle to the area of the
bounding box. Using some sick geometry, we get that the radius of the inner
circle is

√
2 − 1, and thus its area is Sc = π(

√
2 − 1)2. Therefore, we get

q2 =
π(
√

2 − 1)2

22 ≈ 0.135

Now consider the analog in R3. Instead of a square, take a 2 × 2 × 2 cube,
centered at the origin. In each corner, inscribe one-eighth of a sphere. Now,
inscribe an inner sphere, centered at the origin, tangent to all eight pieces.
What is q3? Well, the radius of the inner sphere is

√
3 − 1. Using the volume

formula for a 2-sphere, we get

q3 =
4
3π(
√

3 − 1)3

23 ≈ 0.205

2

michelle hung and andrew gritsevskiy

What does this ratio, qd , approach, as the number of dimensions increases?
That is, what is the value of

lim
d→∞

qd ?

You may think, intuitively, that this ratio approaches 1. After all, it makes
sense that the sphere gets larger and larger, and in infinite dimensions, be-
gins to take up most of the space in the bounding box. Those of you who
have had more exposure to higher-dimensional geometry may say that the
ratio approaches zero2. Some starry-eyed mathematicians may hope that it
approaches one-half. In fact,

lim
d→∞

qd = ∞

If you’re familiar with multivariable calculus, you can use d-dimensional
spherical coordinates to derive the closed form The gamma in the denomi-

nator is the Euler Gamma
function, an extension of
the factorial. To see where
this comes from, try deriv-
ing this equation (Exercise)
and look at the collected
terms from the nested inte-
grals.

qd =
π

d
2 (
√
d − 1)d

Γ (d2 + 1)2d

and see the limit for yourself3.
How does this make any sense? Well, the first place our intuition fails

us is by the idea of the ”bounding box”. In fact, this box is not ”bounding”
at all—rather, it’s a pretty arbitrary construction that the inner sphere can
easily leave. In fact, consider the 4-dimensional case. The radius of the inner
3-sphere is

√
4 − 1 = 1. So, in four dimensions, our inner sphere starts pushing

up against the boundary of the box!
In higher dimensions, the result is even more striking. Observe that

q7 =
16

105π
3(
√

7 − 1)7

27 ≈ 1.21

So at this point, the volume of the inscribed sphere is straight up larger
than that of the bounding box. Here’s the question: where is all this extra area
concentrated? Obviously, the most volume the ball can fit in the bounding
box has an upper bound of 2n. The extra area must all be concentrated in the
small protrusions the ball makes out of the bounding box—in R7, this is a
mere 17% of the volume, but as the dimensionality increases, closer and closer
to 100% of the volume of the d-ball is concentrated on the surface. This is a
fundamental tenet of the curse of dimensionality:

2After all, it is true that the volume of a constant-radius sphere in high dimensions ap-
proaches zero. In our case, however, the radius is very non-constant since it increases as√
d.

3It’s actually nontrivial to show that this goes to infinity as d →∞—there’s a factorial and a
2d term in the denominator! You can either do a bunch of fancy rearrangements and derivatives
and Stirling approximations, or you can take WolframAlpha’s word for it at goo.gl/GTWz1S.

3

The Curse of Dimensionality

In higher dimensions, almost all of the volume of a ball is concentrated arbi-
tratily close to its surface.

Another way of seeing this is, given Vd(r) is the volume of a d-ball with
radius r, it is true that for any ε > 0,

lim
d→∞

Vd(r)
Vd(r − ε)

= ∞

This leads to the following famous joke:

Never buy an orange in high dimensions. Once you peel it, there’s nothing left!

3 the k-nearest neighbors problem

Now we will explore an example of the curse of dimensionality at work.

3.1 Approach 1: linear search

The task is as follows: Given n points in Rd (where is the number of dimen-
sions), find k nearest neighbors from query point X ∈ Rd .

For a bit, we’ll assume k = 1 to make things simple, and later we’ll think
about the general case.

The simplest approach to this problem is called linear search, and is
conducted as follows. Store the current closest neighbor in variable “current
best”. For each point, measure its distance to X. If it is closer to X than “current
best”, update “current best” to be that new point. The running time of this
algorithm is O(n), because you need to iterate through n points.

What about if k can be anything from 1 to n? Then, you need to store a list
of k current bests, and for each point, you need to compare it to each element
of the list. The runtime increases to O(kn), which is equivalent to O(n2), since
k can go up to n. If the number of points is small, this is workable, but as n
grows large linear search is much too slow. Can we do better?

Yes. Data structures called k-d trees allow us to significantly reduce the
running time in low dimensions (we will see what happens in high dimensions
later on).

3.2 Approach 2: k-d trees

A k-d tree, or k-dimensional tree, is a data structure used to organize n points
in Rk . A k-d tree for a set of n points in Rd is constructed as follows4:

− The root node of the tree corresponds to the median of the n
points, taken with respect to the first dimension (rounding up if
the median does not fall on one of the n points).

4I’m really sorry about lack of diagrams but in my defense, they’re really annoying and
difficult to make.

4

michelle hung and andrew gritsevskiy

− Through that median point, a hyperplane split along the
perpendicular axis divides the remaining points into left and
right children of the root node and defines the bounding box
containing itself and all its children.
− Each level down the tree, the dimension by which the

median is measured cycles through the d dimensions. The algo-
rithm iterates through all the points, creating bounding boxes
until every point is on a hyperplane split.

Now consider a k-d tree representing n points in Rd . We can use this tree
to find the k nearest neighbors to a query point X ∈ Rd . Again, we’ll write out
the algorithm for k = 1, which can easily be generalized to greater values of k.

− Store a running estimate of the nearest neighbor in the variable
”current best”. Starting with the root node, move down the tree
recursively, in a depth-first fashion.
− At each node, if it is not closer to X than the current best,

move on. Otherwise, do the following: store that node as the new
current best. Then, draw a hypersphere with center at X and
radius equal to the current best. For any bounding box that is
completely disjoint from the hypersphere, remove from the tree
the box’s corresponding node and all of its children (because
those points must be farther than the current best away from X,
and thus cannot be X’s closest neighbor).
− Continue until all remaining points (ones that have not

been eliminated) have been checked.

What is the runtime of this new strategy? Building the k-d tree takes
O(n log n) time (finding the median for each layer of the tree). Running the
algorithm takes O(log n) on average and O(n) at most (in the case that the k-d
tree partitions cannot eliminate any bounding boxes). Since building the tree
is a fixed cost and makes all future queries a lot easier, we can consider the
runtime to be just O(log n).

What about when k goes up to n? The runtime becomes O(n log n). Recall
that linear search took O(n2) time when k goes up to n. So, on average, this
is must faster than linear search (if you get very unlucky, it is the same). But
what happens if dimensions higher than 2?

Consider n data points chosen uniformly and at random inside a hy-
persphere sphere of radius 1 in Rd . Note that in general, the volume of a
hypersphere is V = sdr

d , where sd is some constant dependent on d, and r
is the radius. Given a data set, we can calculate the distance of the center to
its nearest neighbor. If we perform this experiment many times, what is the
median of these distances? Let this median be m. Half of the time, the nearest
neighbor will be farther than m and half of the time, it will be nearer than
m. If it is farther than m, then all n data points are in the region between the

5

The Curse of Dimensionality

sphere of radius m and the sphere of radius 1. The chances of this occurring
is 1/2. The volume between the spheres of radii m and 1 is sn1n − sndn. The
probability that all N data points, generated independently, fall between both
spheres is then

1
2

=
(
sd1d − sdmd

sd

)n
So m is

m =
(
1 −

(1
2

)1/n)1/d

Thus, when d approaches infinity, m converges to 1. Geometrically, this
means that all points tend to fall on the surface of the sphere (remember a
similar result from the introductory hypersphere example).

In the context of nearest neighbor searches, when d becomes large, all
points end up being a similar distance away from the query point, and it
becomes hard to eliminate any bounding boxes. The runtime is just as bad as
linear search.

In general, when the number of dimensions is high, Euclidean distance
becomes a much worse quantifier of distance between two points.

4 clustering

Let’s talk about some real-life situations where this causes some problems. Say
you are looking for statistical patterns in a collection of data. One way of doing
so is using a clustering algorithm—something that separates data into several
disjoint sets, based on how ”clustered” the points are. k-d trees, for instance,
are often used to generate clusters by the metric of the distance between data
points. However, the curse of dimensionality strikes again—normal cluster-
finding strategies tend to fail in high dimensions.

There are, however, several ways to fix this problem. The first method, pro-
posed by Robert Tibshirani, Guenther Walther, and Trevor Hastie at Stanford
University in 2001, concerns what is known as gap statistics. Basically, there
exist reference data sets with known distributions of points in several clusters.
You can match the experimental data to the best reference distribution and
find clusters accordingly.

Another proposal is something known as the ”noise method”: essentially,
if you claim that you have some algorithm that clusters data, try moving
around the points a bit. If the clusters remain the same, that’s a good sign. If
the clusters change significantly, then you’re most likely clustering noise. This
method allows you to check whether your clusters are reasonable; however, it
does not tell us much about the underlying structure.

The last solution uses something called manifold learning, which we’ll
briefly define here:

6

michelle hung and andrew gritsevskiy

4.1 Manifold Learning

1 definition. A manifold is a thing that looks like Rn if you zoom in far
enough. More precisely, for every point on a manifold, there is a neighborhood
of that point which is locally homeomorphic to n-dimensional Euclidean
space.

The idea of manifold learning is simply that in most cases, the high di-
mensionality of data is artificial—that is, there is usually an embedding of
a low-dimensional manifold in the data space that describes the data pretty
well. This is shown in Figure 4.1, where there is a really simple S-shaped
manifold that describes the data, which standard statistical techniques, such
as principal component analysis, can’t find.

Figure 2: A comparison of using principal component analysis (blue) to describe the
main patterns in the data versus a type of manifold learning (red). Clearly, using
the embedding of the 1-D manifold gives us a better description of the underlying
structure.

5 autoencoders

Let’s use this.
Autoencoders use manifold theory, along with recent technological devel-

opments, to cluster data. On a basic level, the structure of the autoencoder is
simply two functions—f1 and f2. Given a certain input vector v, we apply f1
to v to get some encoding ev . Then, we apply f2 to ev to get back v.

f2 ◦ f1 = id (1)

7

The Curse of Dimensionality

Now, let’s say we’re trying to learn something about the English language.
Thus, for our input vectors, we take all the words of the English language. A
lot of English words tend to be pretty long; for instance, the word ”triangle” is
eight letters long, which we consider to be a point in the eight-dimensional
letter space. How do we reduce the dimensionality so that we can learn
relationships between words?

Well, let’s set some restrictions. We want the following things to be true:

1. f2 ◦ f1 = id

2. ev has length 4 (is a point in 4-dimensional space)

3. If v1 and v2 are similar words, then ev1
and ev2

are nearby points in the
4D space.

If an autoencoder follows these rules, we get a lot of pretty sweet proper-
ties. Essentially what is happening is we are taking the (high-dimensional5)
input data and projecting it into a low dimensional space, which we call
the latent space. Essentially, we are trying to fit all of our dataset onto this
lower-dimensional manifold.

How do we actually go about doing this, rather than just saying this is
what we want? Well, we do this using neural networks. For the purposes of
this class, a neural network is simply a function that learns to minimize a
certain loss in order to reach a certain objective. For instance, if we have a
network that recognizes the faces of staff, the loss could be how many times
the network gets a face wrong, such as labeling J-Lo’s face as Jeff. We will not
go into exactly how the neural network minimizes loss (something something
multivariable calculus)6.

Based on our specifications above, let’s define some losses:

1. Since an autoencoder, by definition, has to lose some information, we
want to make f2 ◦ f1 as close as possible to the identity.

2. Let’s say we also want to make related words really close along the
x-dimension; that is, ∆x(ev1

, ev2
) ∝ 1

relatedness(v1,v2)

3. Similarly, let’s say that ∆y(ev1
, ev2

) ∝ 1
rhyming(v1,v2) , where rhyming(v1, v2)

is how well two words rhyme7.

58 is a big number (https://www.youtube.com/watch?v=0oDsibtPMHw)
6For a detailed introduction to the way neural networks learn, we’d recommend read-

ing through the Stanford Convolutional Neural Networks for Visual Recognition class
(cs231n.github.io), as well as checking out Michael Nielsen’s neuralnetworksanddeeplearn-
ing.com. They’re both excellent resources; in addition, feel free to talk to Dyusha. If you’re
into Julia-lang, check out https://github.com/derikk/nndl-julia for a sick (in-progress) imple-
mentation of Michael Nielsen’s intro.

7So perfect rhymes are close together, slant rhymes are a bit farther, and non-rhymes are far
apart.

8

michelle hung and andrew gritsevskiy

That’s probably it for now. You might have noticed that we’re only imposing
losses along the x and y-dimensions, which means that we’re really projecting
onto a two-dimensional space89. Therefore, the point estool will be close on the
x-axis to the point echair, which itself will be close on the y-axis to the point
ebear. The point emule, for instance, might be pretty close on the x-axis to bear
(since they’re both animals) and a bit closer on the y-axis to stool (since it’s a
pretty decent rhyme).

What does this mean for our clustering algorithm? Well, recall how we had
significant trouble in higher dimensions due to the curse of dimensionality.
Now, since we projected all the data onto a two-dimensional manifold, we can
use existing clustering algorithms to learn about our data!

This is the beauty of autoencoders—they produce a lower-dimensional
representation of the data so we can learn on the manifold.

8In real life, we usually don’t impose metrics along certain dimensions; we usually let the
autoencoder figure it out for itself. However, for the sake of this example, let’s say that this is
the case.

9I just realized that this page already has a ton of footnotes. The place where this is most
annoying is War and Peace—Tolstoy writes all his characters’ five-page letters in French, so you
have to sit with a microscope to read through the font size 6 translation of Natasha’s letter at
the bottom of the page. Anyways, we’d hate our readers to suffer a similar fate, which is why
I’m gonna end this footnote right here.

9

	An introduction
	A failure of intuition
	The K-Nearest Neighbors Problem
	Approach 1: linear search
	Approach 2: k-d trees

	Clustering
	Manifold Learning

	Autoencoders

